
U2F (universal 2nd factor)
how security keys work

Michael Stapelberg
2014-10-30, NoName e.V.



Contents
• motivation for 2nd factor auth 

• security keys from a user perspective 

• yubico’s security key products 

• the protocol in detail 

• questions?

2



2nd factor auth
• user + pass = things you know

• username often (semi-)public 

• passwords often weak, stolen, 
phished, … 

• second factor: a thing you have

• OTP (One Time Password)

3



security keys for users
• when opting in, you register 

one or more security keys 

• logging into google requires 
plugging in and touching the 
security key 

• on phones: NFC instead of 
plugging in

4



Yubico’s security keys

5

18 USD 50 USD

OTP 
U2F 
NFC 

SmartCard

U2F 

60 USD

OTP 
U2F 

SmartCard



protocol in detail

• server, browser (or app), security key 

• hashes: SHA256, signatures: ECDSA (on P-256) 

• raw data: base64, structured data: JSON 

• this presentation assumes you are familiar with the 
properties of hashes and signatures

6

http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
http://en.wikipedia.org/wiki/Base64
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Digital_signature


registration: server
GET /user/zekjur/register

<32 bytes pseudo random>

U2F_V2

http://sigrid.zekjur.net/ssh

challenge

version

appId

http://sigrid.zekjur.net/ssh


registration: browser

<32 bytes pseudo random>

http://sigrid.zekjur.net/ssh

challenge

U2F_V2version

appId

http://sigrid.zekjur.net/origin

http://sigrid.zekjur.net/ssh


registration: security key

<32 bytes PRNG>

http://sigrid.zekjur.net/ssh

challenge

appId

http://sigrid.zekjur.net/origin

\x05

user pub key

len(key handle)

key handle

len(att cert)

attestation cert

signature



registration: security key
\x05

user pub key

len(key handle)

key handle

len(att cert)

attestation cert

signature
user pub key

key handle

hash(challenge, origin)

hash(appid)

\x00



registration: browser
POST /user/zekjur/register

challenge, origin, typ

(from security key)

clientData

registrationData



registration: server
• check that attestation certificate is trusted 

• data was generated by a trusted security key 

• verify signature 

• no attacker modified the appid or origin 

• save user pub key and key handle

12



auth: server
GET /user/zekjur/login

<32 bytes pseudo random>

key1*

http://sigrid.zekjur.net/ssh

challenge

keyhandle

appId

http://sigrid.zekjur.net/ssh


auth: browser

<32 bytes pseudo random>

http://sigrid.zekjur.net/ssh

challenge

key1*keyhandle

appId

http://sigrid.zekjur.net/ssh


auth: security key

user presence

counter

signature

<32 bytes pseudo 

http://sigrid.zekjur.net/ssh

challenge

key1*keyhandle

appId

http://sigrid.zekjur.net/ssh


auth: security key

user presence

counter

hash(challenge, origin)

hash(appid)

signature

user presence

counter



auth: browser
POST /user/zekjur/login

challenge, origin, typ

(from security key)

clientData

signatureData

key1*keyHandle



auth: server
• verify signature (using saved pubkey!) 

• no attacker modified the appid or origin 

• definitely talking to the same security key 

• verify user presence bit 

• verify that counter is increasing

18



summary
• unless there is a wide-spread problem (think 

Debian OpenSSL) 

• we can verify that the user has the registered (!) 
security key 

• phishing becomes a lot harder, virtually 
impossible to do without the user being able to 
notice it (and it now requires malware)

19



questions?

• https://www.yubico.com/ 

• http://googleonlinesecurity.blogspot.ch/2014/10/
strengthening-2-step-verification-with.html 

• http://fidoalliance.org/specifications/download/ 

• https://github.com/yubico/?query=u2f

20

https://www.yubico.com/
http://googleonlinesecurity.blogspot.ch/2014/10/strengthening-2-step-verification-with.html
http://fidoalliance.org/specifications/download/
https://github.com/yubico/?query=u2f

