U2F (universal 2nd factor)

how security keys work

Michael Stapelberg
2014-10-30, NoName e.V.




Contents

motivation for 2nd factor auth
security keys from a user perspective
yubico’s security key products

the protocol in detall

questions?



2Nnd factor auth

user + pass = things you know
username often (semi-)public

passwords often weak, stolen,
pohished, ...

second factor: a thing you have

e OTP (One Time Password)

@ Google Authenticator

Enter this verification code if prompted during
account sign-in:

388407

232915

153864

118938

RERERT179




security keys for users

Google
* when opting Iin, you register
one or more security keys

2-step Verification

» logging into google requires . NE
plugging in and touching the z 1
security key

Insert your Security Key

If your Security Key has a button, tap it.
If it doesn't, remove and re-insert it.

 on phones: NFC instead of
plugglng In Remember this::)":rt\:t::r(:o:'};o days.



Yubico's security keys

18 USD 50 USD 60 USD
OTP OTP
U2k U2k U2k
NFC

SmartCard SmartCard

5



orotocol In detall

server, browser (or app), security key

hashes: SHA256, signatures: ECDSA (on P-256)

raw data: baseoc4, structured data: JSON

this presentation assumes you are tamiliar with the
properties of hashes and signatures



http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
http://en.wikipedia.org/wiki/Base64
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Digital_signature

registration: server

GET /user/zekjur/register

challenge

vVersion U2F V2

N
<32 bytes pseudo random>

appld


http://sigrid.zekjur.net/ssh

registration: browser

<32 bytes pseudo random>

http://sigrid.zekjur.net/



http://sigrid.zekjur.net/ssh

registration: security key

\x05

user pub key

len(key handle)

<32 bytes PRNG>

key handle

len(att cert)

attestation cert

signature



registration: security key

\x05
user pub key

len(key handle)

\x00

key handle

hash(appid)
len(att cert)

hash(challenge, origin)

attestation cert key handle

user pub key

signature \ mm



registration: browser

POST /user/zekjur/register

clientData

registrationData (from security key

challenge, origin, typ



reqgistration: server

* check that attestation certificate is trusted

* data was generated by a trusted security key
e verity signature

* No attacker modified the appid or origin

e save user pub key and key handle

12



auth: server

GET /user/zekjur/login

ol [ETple[JM <32 bytes pseudo random>

keyhandle

appld


http://sigrid.zekjur.net/ssh

auth: browser

<32 bytes pseudo random>



http://sigrid.zekjur.net/ssh

autn: security key

user presence

counter

signature

<32 bytes pseudo



http://sigrid.zekjur.net/ssh

autn: security key

hash(appid)

user presence

user presence

counter
counter

hash(challenge, origin)

signature



auth: browser

POST /user/zekjur/login

—— p—

clientData challenge, origin, typ

sighatureData (from security key)

keyHandle key1*




auth: server

e verity signature (using saved pubkey!)

* NO attacker modified the appid or origin

e definitely talking to the same security key
e verify user presence bit

* verity that counter is increasing

18



summary

* unless there is a wide-spread problem (think
Debian OpenSSL)

e we can verify that the user has the registered (!)
security key

* phishing becomes a lot harder, virtually

impossible to do without the user being able to
notice it (and it now requires malware)

19



guestions”?

https://www.yubico.com/

http://googleonlinesecurity.blogspot.ch/2014/10/
strengthening-2-step-verification-with.html

http://fidoalliance.org/specifications/download/

https://github.com/yubico/?query=u2f

20


https://www.yubico.com/
http://googleonlinesecurity.blogspot.ch/2014/10/strengthening-2-step-verification-with.html
http://fidoalliance.org/specifications/download/
https://github.com/yubico/?query=u2f

